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ABSTRACT 

Given a finite set of points Fo which span a projective space p3, we show 
here that a plane spanned by points of Fo can be a neighbour of at most eight 
points of Fo, these being the vertices of a projective cube; the common neigh- 
bour plane is then elementary with the three only points of F 0 in it being di- 
agonal points of the cube. This extends to p3 some results of L. M. Kelly and 
W. O. J. MoserintheplaneP 2. 

1. Introduction 

Let F o denote a finite non-planar set of points in a three-dimensional ordered 

projective space p3. A plane e spanned by points of Fo was called-by Motzkin 

[ 4 ] - - " o r d i n a r y "  if all but one of the points of e r3 Fo are collinear; if e contains 

exactly three points of Fo, then it is called "elementary".  Motzkin showed, in [4], 

that every set F o determines at least one ordinary plane. This result is an extension 

to p3 of  Sylvester's theorem concerning finite planar non-linear sets of points. 

In [2], Hansen extended the result of Motzkin to arbitrary finite dimension d of  

the space. 

If  P is a planar non-linear set of n points (n finite) call a line spanned by points 

of P "ord inary"  if it contains exactly two points of P. Denoting by m the number 

of ordinary lines determined by P, Kelly and Moser showed in [3] that m >= 3n/7. 

To obtain this result, they defined and investigated the "residence" and the 

"neighbours"  of a point of P. One of their results is the following: a line s can 

be a neighbour of at most four points (of P), and if s is a neighbour of exactly 

four points, then s joins two diagonal points of the complete quadrangle deter- 

mined by the four points, s is ordinary, the only two points of  P on s being these 

diagonal points (corollary 3.4 and following remark in [3]). 

The purpose of the present paper is to extend to p3 some of the results of Kelly 
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and Moser. The main result here obtained is the following extension of the above- 

mentioned theorem concerning a complete quadrangle: 

FUNDAMENTAL THEOREM. A plane , can be the neighbour of at most eight 

distinct points of F o. If c~ is the neighbour of exactly eight points of F o, these 

points are the vertices of a projective cube, the plane ~ is elementary and the 

points of Fo c3 ,  are three (out of four) diagonal points of the cube. 

A "projective cube"  is defined below; it is, in a sense, an extension to p3 of a 

complete quadrangle (projective square). 

2. Definitions, notation anti terminology 

In what follows F o is a finite non-planar set of points in an ordered projective 

space p3, 1, I denotes the set of lines spanned by points of F o, and F2 the set of 

planes spanned by points of F o. 

Points are denoted by capital Latin letters A , B , C , . . . ,  lines by small Latin 

letters p ,q , r , . . . ,  and planes by small Greek letters cqfl,7,. .-.  For  elements 

specifically belonging to Fo, F 1 or F 2, the superscript ( ° ) will be added; e.g., A ° 

B ° are points of Fo, q° ~ F1, ,°  ~ Fz, while B, r, 7 are not necessarily elements of the 

corresponding set F i. Subscripts are used to distinguish particular points, lines or 

planes. 

If  the plane ct ° is spanned by A ° and q°, one writes: ~°= A°q°; and if ~° is spanned 

by the three noncollinear points A°,B°,C° (or A~', i = 1,2,3), one writes: 

~° A°B°C° or a ° o o o = = A1A2A 3. 

Following the terminology in [1], if a° is ordinary, but not elementary, the 

points of F 0 ~ a° lie all but one on a line called the "fol lower"  line of a°, while 

the unique point of F 0 n ~  ° not on this line is the " leader"  of ~°. 

A finite non-empty set of planes determines a partition of space into convex 

regions bounded by these planes; each such closed region is a three-dimensional 

cell 33. Let F2(A °) be the subset of planes of F 2 not incident to A°; then A ° is 

interior to one (and only one) cell 63(A °) determined by F2(A°), this cell is the 

"residence" of A °, while each of  the planes, bounding it, is called a "ne ighbour"  

of A °. This terminology is an extension to p3 of the one introduced, for p2, in [3]. 

Definitions and properties of convex regions, boundary points, lines or planes 

are those given in [5]. 

The notion of "separat ion" of four distinct collinear points is fundamental 

in the proofs of Sylvester's and Motzkin's theorems and of other results derived 

from these latter. In the present paper, the plane and the space duals of this 
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concept are extensively used. If  A, B separate C, D we write AB [{ CD, with similar 

notations for lines and planes. For more details on this concept see, e.g., [51. 

The "projective cube": consider a cube in a Euclidean space E 3 (or a parallel- 

epiped in an affine space A 3) with its eight vertices A~(i = 1,2,-.., 8), the three 

points at infinity C1, C2, Ca on its edges, and its center C,. The configuration 

formed by these twelve points, together with its 16 edges and 12 face planes (or 

any projectively equivalent configuration) is called here a "projective cube". The 

A{s are the vertices of the cube (1 _< i _< 8), the Cfs  are its "diagonal points"  

(j = 1, 2, 3, 4). Each Cj is incident to four lines joining pairs of vertices, these are 

the "edges" of the projective cube. The eight vertices can be partitioned--in six 

different ways--in two sets of four coplanar points which are the vertices of two 

complete quadrangles lying in two different planes (said to be "opposite faces" 

of the cube) in such a way that these quadrangles have two of the Cfs  as common 

diagonal points, and are in perspective to each other from each of the two 

remaining Of  s; the projective cube has thus six pairs of opposite face planes, 

and in all 12 face planes. 

A complete quadrangle is projectively equivalent to a square (or parallelogram) 

two of its diagonal points correspond to the points at infinity on the edges of the 

square, while the third diagonal point corresponds to its center. With this in 
mind, a "projective cube" is an extension to pZ of a complete quadrangle. 

3. Common neighbour planes 

In this section, we consider a plane c~ ° which is a neighbour of k points 

A~ e Fo, (i = 1, 2, ..., k) and we investigate the possible configurations formed by 

these k points and by the set c~ ° t~ Fo, for different values of k. The following 

terminology will be used: let A,j = A O A f n e  ° with i # j ,  i,j = 1,2, . . . ,k ,  then 

Ai~ will be called an "int.-point" (intersection point) in c~ ° w.r. to (with respect to) 

the set {A~}. If  B ° e Fo n c(, and B ° is not an int.-point, we call it an "outsider"  

w.r. to {A°}. 

LEMMA 1. Three distinct collinear points A~(i=1,2 ,3)  cannot have a 

common neighbour plane c~ °. 

PROOF. Let ~° be a plane of F2 not incident to any of the A~"s, and let 

B = c~°c3 A°~A°2; we may assume the points labelled so that: 

(1) A~B II A~A~ 

In ~o, there must exist a line q° not through B; let fi~' = q°A°(i = 1,2, 3). Then the 

four planes ~° and/~o have qO as common axis and from (1) follows: 
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(2) 3 

which implies that cd is not a neighbour of A~. 

LEMMA 2. I f  the plane ~o is a neighbour of three non collinear points 

A ° (i = 1,2, 3), then every line q°E F 1 in ~o must be incident to an int.-point Ai]. 

PROOF. Let ~o= AOlA~A~ (the plane spanned by the A°'s) and m =~°(3~°, 

then the three int.-points A12, A13 , A23 are distinct and lie on m. If  some 

qO~ ao ~ F1 meets m in a point Q different from the A i j ' s  , then the four planes 

~o and y~ = q°A ° (i = 1,2, 3) are distinct and have q° as common axis. We may 
assume the points labelled so that: 

(3) II 

As A~ lies in y~, relation (3) implies that this point A~ is separated from any point 

in ao (not on q°) by ?~ and ?~, so a° cannot be a neighbour of A~, which is a 

contradiction. Hence one must have Q = Aij for some i and j.  

With the same notation as in Lemma 2, the following theorem is a direct result 

of this Lemma and the proof  will be omitted: 

THEOREM 1. I f  O~ ° is a neighbour of three non-collinear points A°(i = 1,2, 3), 

then the points of F o r3 ~° form one of two possible configurations: 

- - type  " L " :  consists of a set of points collinear with one of the Ai/s  (including 

possibly this latter) and one or both of the two other Ali's; 

- - type  " T " :  consists of three points B°O = t ,2 ,  3) vertices of a triangle such 

that each B°B~ is incident with the corresponding A~i, also some or all of the 

Agj's can be elements of Fo. 

REMARK 1. In type " T " ,  the two triangles A~A~A~ and BI°B~B] are in 

perspective from the line m = ~° n i l  ° (fl° being the plane spanned by the 

A~'s). Then, by the converse of  Desargues' theorem, the two triangles are in 

perspective from some point M such that Ai°B ° are collinear with M for each 

i = 1,2,3. 

Now we consider four points A~ (i = 1,2, 3, 4) which are the vertices of a 

tetrahedron in space; the four face planes of  this tetrahedron intersect a plane 

~°--not incident to any of the A i 's  in four lines m~ where: 

ml = ~o r3A~A~A~ and i,j, h ,k  is a permutation of  the integers 1,2,3,4. The 

m~'s in ~° are the sides of a complete quadrilateral, the six vertices of  which are the 

int.-points Ajk (clearly if Ajk lies on m i, then i,j, k are different from one another). 
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Two points Aij, Ahk are called "opposite" int.-points iff they are opposite vertices 

of the complete quadrilateral; deafly opposite vertices correspond to opposite 

edges A°A~,AT, A~, of the tetrahedron and conversely. 
AlzA34 , AlaA24,A14AE3 are the sides of the diagonal triangle of the quadrilat- 

eral, and let B 1, B2, B a be the vertices of this triangle; with this notation, one 

obtains the following: 

THEOREM 2. I f  o; ° is a neighbour of four (not coplanar) points A°(i -- 1, 2, 3, 4) 

then the points of Fo t'3ct ° are among the nine points Aij, Bk(i, j = 1,2,3,4 i ~ j ;  

k = 1,2,3) and three configurations only are possible: 

-- type 1: consists only of int.-points Aij, possibly all of them; 

--type 2: consists of one  B k and up to four Aij's (those four which lie on the 

two sides of the diagonal triangle meeting at Bk): 

--type 3 : consists of the three Bk's only, and o~ ° is an elementary plane. 

PROOF. Applying theorem 1 to each triple of the AT's, one sees easily that the 

six A~j's form a configuration of type " T "  (or of type " L "  if one takes less than 

the six points), thus type 1 is certainly possible. Suppose next that ~° t3 Fo consists 

of at least one int.-point, say A12 (denoted then A~2), and at least one outsider, 

call it X °. By Lemma 2 X ° cannot lie on any m i and A~2 does not lie neither on m 1 

nor on m2; then by applying Lemma 2 to each of the triples A2~43°A,~ and A°~A~aA°4, 

it follows that X°A~2 must be incident to A34 the int.-point opposite; to A]2. 

Thus, every outsider other than X ° should also lie on this line A72Aa4, which is a 

side of the diagonal triangle. However, there exist a point of F 0 ~ ~° not collinear 

with A~2X°; such point is then another int.-point; assume it to be Ai3 (hence 

denoted A23). The int.-point opposite to A]3 is A24 , and repeating the above 

argument, X ° and every outsider should lie also on A~3 A24 (a second side of the 

diagonal triangle). Hence there can be only one outsider: the point of intersection 

of A~2A34 and A~aA24, i.e., one of the Bk's; the other possible points are evidently 

Aa4 and A24 and only these two. This is type 2. 

Finally, suppose a° contains only outsiders; at least three non-collinear ones 

are required. By Lemma 2 applied to each of the triples A,°Aj°Ak °, these outsiders 

cannot lie on any of the mh's. Then, by an argument similar to the one above, 

each pair of outsiders must be collinear with two opposite int.-points, i.e. lie 

on a side of the diagonal triangle; as we have three pairs not on one line, these 

outsiders must coincide with the B,'s and there can be no other points: this is 

type 3. Of course ct ° is elementary in this case. 
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All possible combinations of int.-points and outsiders have been investigated, 

and the proof  of  the theorem is complete. 

REMARK 2. AS noted in Remark 1, the triangle B1BzB 3 is in perspective with 

each of the triangles A~A~A~, Ax°A3°a4 °, A2?A3°,44, ° and A°tA~A~. If  As, A6, A7, As 

are the respective centres of  perspectivity, it is easily shown that the eight points: 

A~(i = 1, 2, 3,4) and Aj(j = 5, 6,7, 8), are the vertices of a projective cube, the 

points B~(k = 1, 2, 3) being three (out of four) of the diagonal points of the cube. 

The four A°'s and the plane ~° completely determine the cube. 

THEOREM 3. l f  a plane ~° is a neighbour of five points A~' (i = 1,2, . . . ,5)  no 

four of which being coplanar, then ~° is an elementary plane; the three points of 

Fo n=~ ° are int.-points w.r. to the five A~'s. Moreover, the indices can be chosen 

so that these points will be A°st,A]2, As°3 so that ~° is of type 1 w.r. to 

A°sA°~A~A], of type 3 w.r. to A~A~A]A] and of the type 2 w.r. to each of the 

three other possible tetrahedra. Except for a permutation of subscripts, this is 

the only possible configuration. 

PRoof. The five points A~' are vertices of five tetrahedra. By Theorem 2, ~° 

should be of one of the types 1, 2 or 3 w.r. to each tetrahedron. The proof  of the 

theorem will be given in a series of steps or lemmas. 

LEMMA 3. C~ ° can be of type 3 w.r. to at most one of the tetrahedra. 

PROOF. If  c~ ° is of type 3 w.r. to two tetrahedra--say, e.g., A°~A~A°3A ~ and 

A~A°zA°3A° 5, then the two corresponding complete quadriIaterals in ~° have the 

same diagonal triangle, and they also have a common edge m4 = m5 = 

~° n A°~A~A~ as the plane A°~A~A~ is a face of  both tetrahedra. However a well- 

known and easily proved exercise in elementary planar projective geometry 

states there is one and only one complete quadrilateral having a given triangle as 

diagonal triangle and a given line (not incident to any vertex of the triangle) as 

an edge. On the other hand, the two quadrilaterals cannot coincide (A~ ¢ A~), 

so we get a contradiction and the lemma is proved. 

LEMMA 4. All the points of ~° tq F o are int.-points A~j w.r. to the five A°'s. 

PRoof. From Lemma 3 above, ~o is of type 1 or type 2 w.r. to at least four 

of the tetrahedra, and therefore it contains at most one outsider point. Assume 

there is an outsider X°; then there must also be an int.-point A~ ~ F o for some 

values of i and j (i ¢ j ) .  It follows that w.r. to the tetrahedron which has not 
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A ° as vertex and w.r. to the tetrahedron which has not A~ as vertex, A~j would be 

a second outsider. This in turn implies s ° is of type 3 w.r. to both tetrahedra, 

contradicting Lemma 3. Hence no X ° exists. 

LES~IA 5. Ct ° is of type 3 w.r. to at least one tetrahedron. 

PRoof. Suppose s ° is not of  type 3 w.r. to any of the five possible tetrahedra. 

By Lemma 4, s ° c3 Fo consists of at least three int.-points (non-collinear). We may 

assume A~2 is one of them, then the indices 1 and 2 cannot appear in the other 

' " r A~i s ~ Fo, otherwlse w . .  to the tetrahedron not having the corresponding A~ or A~ 

as vertex, ,°  would have (at least) two outsiders and be of  type 3, contradicting 

the assumption. Then a second possible point would be A34 (or A3s or A45). 

Again, by the same argument, a third point A~j ~Fo cannot have 1,2,3,4 as 

indices; but only the index 5 remains and i ~ j ;  one gets an impossibility; and 

the lemma is proved. 

Going back now to the proof  of Theorem 3, it follows from Lemmas 3 and 5, 

that s ° must be of type 3 w.r. to exactly one tetrahedron, and s ° is then elementary. 

We may suppose the points labelled so that the point which is not a vertex of  

that particular tetrahedron (w.r. to which s ° is of type 3) is A~. By Lemma 4, 

the three unique points of s ° c3 Fo are int.-points w.r. to the five A~'s but outsiders 

w.r. to the four A~,A~,A;,A~. This requires that these points be indexed 

A°si, A°sj, A°~k, with i,j, k being three (distinct) out of the four integers 1,2, 3,4. 

Again one may assume the labelling so that these are the points A~,A~2,A°s3, 

which shows that s ° is of  type 1 w.r. to the tetrahedron A°~A~A]A~. It  

is easily checked that e° is of type 2 w.r. to the three remaining tetrahedra; it is, 

of  course, of type 3 w.r. to A~A~A~A~. 

With the same notation as in Theorem 3 and using Remark 2, with the points 

B, being the A~, (i = 1, 2, 3) one proves without difficulty the following: 

COROLLARY 1. There is one and only one projective cube having the points 

A ° ( /=1 ,2 ,3 ,4 ,5 )  as vertices and the points A°sj ( j = 1 , 2 , 3 )  as diagonal points. 

Furthermore, given any four of the five A°'s, and all three A~/s, ~the fifth A °'s 

is uniquely determined by these seven points so that the plane ~° spanned by the 

A°sj's be a neighbour of the five AO's and the A°sj's be elements o f F  o. 

COROLLARY 2. Six or more points of Fo, no four of which are coplanar, 

cannot have a common neighbour plane. 

This is an obvious result of  Theorem 3 and Corollary 1. 
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We investigate now the case of four points A~(i = 1,2,3,4) which are the 

vertices of  a complete quadrangle in a plane flo and have a common neighbour 

plane ~° with m = c~ ° n fl°. We remark that if two opposite sides of the quadrangle 

say, e.g. A~A~ and A°aA~ meet m (hence ~°)inint.-pointsA12,A34, andA12~Aa4, 

it will follow from Lemma 2 that no line q°eF1  C3c~ ° is incident to A12 or A34, 

as every triangle having three of the A~'s as vertices has one and only one of 

these opposite sides as an edge. Using this remark and again Lemma 2 the fol ow- 

ing theorem is easily proved: 

THEOREM 4. I f  s ° is a neighbour plane of four points A~ ( i=1 ,2 ,3 ,4 )  which 

are vertices of a complete quadrangle in a plane fl°, then two diagonal points 

of the quadrangle are incident to the line m = s ° r3 fl ° (i.e. must be int.-points 

w.r. to the A°'s); also the plane s ° is ordinary, one of these diagonal points on m 

being the leader point, while the follower line is incident to the second diagonal 

point on m, this latter point may be itself, a point of F o. 

COROLLARY 3. Five or more distinct coplanar points of F o cannot have a 

common neighbour plane. 

This is an immediate result of Theorem 4, as two complete quadrangles having 

three common vertices cannot have two common diagonal points. 

THEOREM 5. /f s ° is a neighbour of five points A~ (i = 1,2,3,4,5)--where 

four of them are vertices of a complete quadrangle in a plane fl°, while the 

fifth one, say A~, is not incident to fl° then s ° is ordinary with one of the diagonal 

points of the quadrangle as leader point, while the follower line is incident to a 

second diagonal point of the quadrangle; also this line contains at most three 

points of Fo: this second diagonal point itself and two int.-points Ai5. Hence 

s ° ~ F o  contains at most four points which are int.-points w.r. to thefive A~'s. 

PROOF. Without loss of generality, one may assume that the points have been 

labelled so that A?, (i = 1,2, 3, 4) are the vertices of the quadrangle, in the plane 

fl°. By Corollary 3, A~ does not lie in fl°. By Theorem 4, s ° being a neighbour of  

the four vertices of the quadrangle, it is ordinary with two diagonal points lying 

on m = s ° c~fl °, and again one may assume the points in fl° labelled so that 

A12 --- A34 and A14 - A23 are the two diagonal points on m, and so that A12 ~ 1-* 0 

(hence denoted A~2); then the follower line must be incident to A~4. It remains 

to show that on that line, there may be besides A~4 itself at most two more points 

of Fo and these are int.-points A~5. 

In what follows, i j  h k is any permutation of  the integers 1234. Apply now 
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Theorem 2 to each of the four tetrahedra A°sA]A~Ah °. The vertices of the cor- 

responding complete quadrilateral in e° are the points A~z, A14, Ais, Ajs, Ah5 

and either A13 or Az4, while the point Aks is always a vertex of the diagonal 

triangle of the quadrilateral (this is easily verified for every permutation ij  h k). 

Clearly, as A]z ~Fo, e° is of type 1 or type 2 w.r. to each tetrahedron and must 
0 0 0 O. be of type 2 w.r. to at least one of them, say AsA ~ AjA h, however the only possible 

vertex of the corresponding diagonal triangle which lies on that side of this 

triangle which is incident to A]z is exactly AkS. 

Therefore, ~°(3 F o consists of A~E, Aks, possibly Aa4 and the other Aq5 which 

lies on the line A14 AkS, i.e. together either the pair (Ass, Aa5) or the pair (Azs, Aas) 

(both elements or only one of the pair). Then one verifies that with these four 

points (or only three of them) cd is of type 1 w.r. to each of the tetrahedra having 

both A~, and A~ as vertices and of type 2 w.r. to those tetrahedra having only 

one of them as vertex; and there are no other possibilities. 

COROLLARY 4. With the same conditions and notation as in Theorem 5 above, 

there exists a projective cube (not unique) having all five A~' (i = 1,2,3,4,5) as 

vertices and three (non-collinear) out of the four possible points of ct ° r3 F o as 

diagonal points. 

PROOF. c~ ° must contain (at least) three non-collinear points of Fo, hence one 

of them must be either A12 or A14, the other either Ak5 or Aq5 (with the notation 

of Theorem 5). Suppose the labelling is so that A] 2 and A] 5 are certainly elements 

of Fo, then either A~4 or A45 (or both) are also elements of Fo. Then in the plane of 

A°sA°~A~, the point A 6 = A~EA ~ C3A°~sA~ is the only possible fourth point, if a 

projective cube exists with the conditions as stated. In the plane of A°sA~A~, 

two possible cases arise: if A14 is taken as third diagonal point of the required 

cube, the only possible point in this plane is As = A~4A~ c3A~sA°4 . Then, in the 
o o -- 0 0 0 plane A~A~A8 containing A12 and A15, one obtains A7-A~2A8 ~A15A3. 

It follows that A;, A 6, A 7, A 8 are coplanar vertices of a complete quadrangle which 

has A]2 and A14 as diagonal points. It is easily seen that A~ (i = 1, 2, 3, 4, 5) and 

Aj (j = 6, 7, 8) are the eight vertices of a projective cube, with diagonal points 

A]2, A]5, A14. If  A,5 is taken as third diagonal point, in the plane A~A~A?~, 

one gets the point A~ = A4sA~ c3 AtsA]. Then, in the plane A;A]A'8 containing 
o o l 0 ! o o A12 and A15, one obtains, as above: h 7 = A;t2A8 t")A15A 3. Again, it is easy to 

show that the eight points A~ (i = 1, 2,.. . ,  5) A 6, A7 and A~ are vertices of a cube 

with diagonal points A~2, A]5, A45. 
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In the above discussion, A~2 and A~5 have been taken, in all cases, as diagonal 

points of the cube; other cubes can be obtained having A~(1 < i < 5) as vertices 

and other points A~i as diagonal points. 

THEOREM 6. I f  a plane ~o is a neighbour of six points of Fo, then it is an 

ordinary plane and contains at most four points of 1-" o. Furthermore, the six 

points are vertices of a projective cube having three of the points of ~o ~ Fo as 

diagonal points. 

PROOF. By Corollaries 2 and 3, four of the six points having 0~ ° as neighbour 

must lie in one plane fl°, call them A~ ° (i = 1,2,3,4); the two others cannot be 

incident to fl°. Call one of them A~ and apply Theorem 5 to the five A °'s; this 

proves immediately the first part of the present theorem. As in the proof of 

Theorem 5, one may assume the points labelled so that the two diagonal points of 

the quadrangle A ° ( i= 1,2, 3,4) are A~2 and A14, with A~2 and A~5 elements of 

Fo, and possibly A45 and A14 (one of them at least) also. Let Aq be the sixth point 

for which ~° is a neighbour and apply again Theorem 5 to the set of five points 

AT, At, A~, A], Aq °. Any point of ~o c3 F o must be an int.-point of this set, hence 

one must have A]5 - Ajq for some value of j taken among the integers 2,3,4 

(j = 1 would imply that A~, A~, Aq are collinear, contradicting Lemma 1). Thus 

the points A~,A°s,A~,A~ are coplanar and one can apply Theorem 4 to this set. 

Together with the results applying to the set A ° (i = 1, 2,..., 5) stated above, three 

cases are possible: 

(i) j = 2; the plane A~A°sA~ contains already the points A~2 and A~5, as ele- 

ments of Fo, then A~ must coincide with the point A 6 of Corollary 4. Both A45 

and A14 are possible elements of F o. 

(ii) j = 3; the plane A~A°sA° 3 contains A~5 e Fo; thus this point is one of the 

diagonal points of A~°A2A~A~, i.e. Aq°lies on A~A°15. The other diagonal point 

(in e°) must be either Aa3 or A35. If it is A13, then A~ = A~3A ~ nA~sA°3. It can 

be verified that this is point A7 of Corollary 4, and in this case, as A13¢ Fo, the 

only possible third point of Fo c3 c~ ° is A14, (A~4A~2 is incident to A~3, as required 

by Theorem 4); eo is elementary. If the required diagonal point in ~° is Azs, 
o o 0 0 o t then: A~ = A35A 1 (3 A15A 3 and Aq -= A 7 of Corollary 4; 0( is again elementary 

with A45 as third point of e°C3Fo. 

(iii) j = 4; A~ must lie in the plane A~A4°A° 5 which contains A~s, A14 and A4s. 

Then, according to which of A~4 or A45 is taken as second diagonal point of the 

corresponding quadrangle, and by arguments similar to those in (ii), one obtains 
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respectively A~ = A8 or A~ (of Corollary 4). In the first case, s ° n Fo consists of 

A~2, A~ 5, A14 and also possibly A2s; in the second case, ,°  n Fo = {A]2, A] s, A45}, 

s ° is elementary. 

The second part of the theorem follows from the above results and Corollary 4. 

THEOREM 7. I f  a plane ~o is a neighbour of seven distinct points of F o, then 

these points are vertices of a projective cube, ~° is elementary, and the three 

points of o~ ° n F  o are diagonal points of the cube. 

PROOF. As in the proof of Theorem 6, four of the points must lie in a plane flo 

call them A °, i = 1, 2, 3,4; the three others are not in flo, call one of them A~, 

and w.r. to those five poi , ts  A ° (1 < i -< 5), with the same notation as in Theorems 

5 and 6, suppose A~2, A~5 ~ Fo n s °. Then, by similar arguments as above, and 

by Theorem 6, it follows that for the two other points having s ° as neighbour, the 

only possible cases are: 

(i) The two points are the points A6 and A 7, or A 6 and A8, or A7 and Aa 

(with the notation of Corollary 4); in each of these cases, ,°  is elementary, with 

A14 as third point of Fo in ~°. 

(ii) The two points are the points A 6 and A~, or A 6 and A~, or AS and A~, 

again ,o is elementary with A4s ~ Fo. 

Then the theorem follows from these facts and Corollary 4. 

The Fundamental Theorem, stated in the Introduction, now follows in a 

natural way: With the same notation as in Corollary4 and Theorems 5, 6, 7, if  ~° 

is a neighbour of eight points, then clearly, these are: 
o O O 

- -  either A? ( i =  1,2,..-,5), A6,A7,As and so n F o  = {A12,Als, A14}; or 
0 t ! ~ o o 0 A, (i = 1,2,.--,5), A6,A7,A 8 with % ~ F o  {A~2,A~5,A4s}, and obviously, no 

more than eight points can have a common neighbour plane. 

4. Conclusion 

The Fundamental Theorem proved here for p3 is an extension of corresponding 

results of Kelly and Moser for the plane case, as stated in the Introduction (see 

[3]) and this suggests the following conjecture: 

Given, in a d-dimensional ordered projective space pd, a set Fo of n points 

(n finite) not lying in one hyperplane, with the corresponding definitions of the 

residence of a point, a neighbour hyperplane, and a projective d-dimensional 

cube with 2 a vertices and d + 1 diagonal points, one may conjecture that a 

hyperplane can be a neighbour of at most 2 a points of Fo, these points being the 
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vertices o f  a projective cube, the hyperplane being then elementary, with exactly 

d points  o f  Fo incident to it, these d points  being diagonal  points  of  the cube. 
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