ON FINITE SETS OF POINTS IN P*
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ABSTRACT

Given a finite set of points I'c which span a projective space P3, we show
here that a plane spanned by points of I'g can be a neighbour of at most eight
points of Iy, these being the vertices of a projective cube; the common neigh-
bour plane is then elementary with the three only points of I'y in it being di-
agonal points of the cube. This extends to P3 some results of L. M. Kelly and
W. O.J. Moserinthe plane P2.

1. Introduction

Let T', denote a finite non-planar set of points in a three-dimensional ordered
projective space P3. A plane « spanned by points of I', was called-by Motzkin
[4]—‘‘ordinary”’ if all but one of the points of & N I"y are collinear; if o contains
exactly three points of I', then it is called *‘elementary”’. Motzkin showed, in [4],
that every set I’y determines at least one ordinary plane. This result is an extension
to P3 of Sylvester’s theorem concerning finite planar non-linear sets of points.
In [2], Hansen extended the result of Motzkin to arbitrary finite dimension d of
the space.

If P is a planar non-linear set of n points (n finite) call a line spanned by points
of P “‘ordinary”’ if it contains exactly two points of P. Denoting by m the number
of ordinary lines determined by P, Kelly and Moser showed in [3] that m = 3n /7.
To obtain this result, they defined and investigated the ‘‘residence’’ and the
““neighbours’” of a point of P. One of their results is the following: a line s can
be a neighbour of at most four points (of P), and if s is a neighbour of exactly
four points, then s joins two diagonal points of the complete quadrangle deter-
mined by the four points, s is ordinary, the only two points of P on s being these
diagonal points (corollary 3.4 and following remark in [3]).

The purpose of the present paper is to extend to P* some of the results of Kelly
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and Moser. The main result here obtained is the following extension of the above-
mentioned theorem concerning a complete quadrangle:

FUNDAMENTAL THEOREM. A plane o can be the neighbour of at most eight
distinct points of T'y. If « is the neighbour of exactly eight points of I'y, these
points are the vertices of a projective cube, the plane o is elementary and the
points of [y Na are three (out of four) diagonal points of the cube.

A “‘projective cube’’ is defined below; it is, in a sense, an extension to P3of a
complete quadrangle (projective square).

2. Definitions, notation and terminology

In what follows I'y is a finite non-planar set of points in an ordered projective
space P?, I'; denotes the set of lines spanned by points of I'y, and I, the set of
planes spanned by points of I'y.

Points are denoted by capital Latin letters 4,B,C,---, lines by small Latin
letters p,q,r,---, and planes by small Greek letters a,f,y,:--. For elements
specifically belonging to Iy, I'; or I',, the superscript ( °) will be added; e.g., 4°
B° are points of T'y,q° €'y, «° € I',, while B, r, y are not necessarily elements of the
corresponding set I';. Subscripts are used to distinguish particular points, lines or
planes.

If the plane o° is spanned by A° and ¢°, one writes: a°=A4°q°; and if «° is spanned
by the three noncollinear points A°,B°,C° (or A7, i=1,2,3), one writes:
o = A°B°C° or a° = AJASAS.

Following the terminology in [1], if «° is ordinary, but not elementary, the
points of Iy Na° lie all but one on a line called the “follower”’ line of °, while
the unique point of T'y Na° not on this line is the “leader’” of «°.

A finite non-empty set of planes determines a partition of space into convex
regions bounded by these planes; each such closed region is a three-dimensional
cell d5. Let I'»(A4°) be the subset of planes of I', not incident to A°; then A° is
interior to one (and only one) cell §;(4°) determined by I',(A4°), this cell is the
“‘residence”’ of A°, while each of the planes, bounding it, is called a “‘neighbour”’
of A°. This terminology is an extension to P* of the one introduced, for P2, in [3].
Definitions and properties of convex regions, boundary points, lines or planes
are those given in [5].

The notion of ‘‘separation’ of four distinct collinear points is fundamental
in the proofs of Sylvester’s and Motzkin’s theorems and of other results derived
from these latter. In the present paper, the plane and the space duals of this
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concept are extensively used. If 4, B separate C, D we write AB “ CD, with similar
notations for lines and planes. For more details on this concept see, e.g., [5].

The “‘projective cube”: consider a cube in a Euclidean space E* (or a parallel-
epiped in an affine space 4°) with its eight vertices A(i = 1,2,---,8), the three
points at infinity C;,C,,C; on its edges, and its center C4. The configuration
formed by these twelve points, together with its 16 edges and 12 face planes (or
any projectively equivalent configuration) is called here a “‘projective cube”. The
A;’s are the vertices of the cube (1 =i < 8), the C;’s are its ‘‘diagonal points’
(j = 1,2,3,4). Each C; is incident to four lines joining pairs of vertices, these are
the “‘edges> of the projective cube. The eight vertices can be partitioned—in six
different ways—in two sets of four coplanar points which are the vertices of two
complete quadrangles lying in two different planes (said to be ““opposite faces”
of the cube) in such a way that these quadrangles have two of the C;’s as common
diagonal points, and are in perspective to each other from each of the two
remaining C;’s; the projective cube has thus six pairs of opposite face planes,
and in all 12 face planes.

A complete quadrangle is projectively equivalent to a square (or parallelogram)
two of its diagonal points correspond to the points at infinity on the edges of the
square, while the third diagonal point corresponds to its center. With this in
mind, a ‘““projective cube’’ is an extension to P* of a complete quadrangle.

3. Common neighbour planes

In this section, we consider a plane «° which is a neighbour of k points
A2eTy, (i = 1,2,-+-,k) and we investigate the possible configurations formed by
these k points and by the set a° N Ty, for different values of k. The following
terminology will be used: let 4,; = AA7Na® with i5#j, i,j=1,2,---,k, then
A;; will be called an ““int.-point” (intersection point) in «° w.r. to (with respect to)
the set {4°}. If B°e T, Na°, and B is not an int.-point, we call it an “outsider”’
w.r. to {47}

LemMA ). Three distinct collinear points Aj(i=1,2,3) cannot have a
common neighbour plane o°.

Proor. Let o° be a plane of I', not incident to any of the A;’s, and let
B=u°N A3AS; we may assume the points labelled so that:

M A3B | 4343
In «°, there must exist a line ¢° not through B; let 7 = q°4; (i = 1,2, 3). Then the
four planes «° and S have ¢° as common axis and from (1) follows:
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which implies that «° is not a neighbour of A47.

LEMMA 2. If the plane o° is a neighbour of three non collinear points
A3 (i =1,2,3), then every line q° €'y in o° must be incident to an int.-point A;;.
Proor. Let §°= AjA5A5 (the plane spanned by the A7’s) and m =a°N f§°,
then the three int.-points A4,,, A3, A,; are distinct and lie on m. If some

g°ea® NI} meets m in a point Q different from the A;;’s, then the four planes

o® and y; = q°A?(i = 1,2, 3) are distinct and have ¢° as common axis. We may
assume the points labelled so that:

) L

As Aj$ lies in 9, relation (3) implies that this point A{ is separated from any point

QayC

Y2¥3

in o°® (not on g°) by y3 and y3, so «° cannot be a neighbour of 4], which is a
contradiction. Hence one must have Q = A4;; for some i and j.

With the same notation as in Lemma 2, the following theorem is a direct result
of this Lemma and the proof will be omitted:

TaeoreM 1. If a® is a neighbour of three non-collinear points A(i = 1,2,3),
then the points of I'o N a® form one of two possible configurations:

—type ““L”: consists of a set of points collinear with one of the A;;’s (including
possibly this latter) and one or both of the two other A;;’s;

—type “‘T”’: consists of three points Bj(i = 1,2, 3) vertices of a triangle such
that each BPB; is incident with the corresponding A;;, also some or all of the
A;;’s can be elements of I'g.

RemARK 1. In type “‘T”’, the two triangles ASASAS and B{B$BS are in
perspective from the line m = oa° N f°(B° being the plane spanned by the
A3’s). Then, by the converse of Desargues’ theorem, the two friangles are in
perspective from some point M such that AB; are collinear with M for each
i=1,2,3.

Now we consider four points 47 (i = 1,2,3,4) which are the vertices of a
tetrahedron in space; the four face planes of this tetrahedron intersect a plane
a°—not incident to any of the 4;’s—in four lines m; where:

m; =’ NASAZAR and i,j,h .k is a permutation of the integers 1,2,3,4. The
m;’s in a° are the sides of a complete quadrilateral, the six vertices of which are the
int.-points A4, (clearly if A lies on m;, then i,j, k are different from one another).
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Two points A4;;, Ay, are called “‘opposite”” int.-points iff they are opposite vertices
of the complete quadrilateral; clearly opposite vertices correspond to opposite

edges A{AS, ApAp of the tetrahedron and conversely.
Ay A, Ai3A54, A4 A,5 are the sides of the diagonal triangle of the quadrilat-

eral, and let B,, B,, By be the vertices of this triangle; with this notation, one
obtains the following:

THrOREM 2. Ifo° is a neighbour of four (not coplanar) points A{(i = 1,2,3,4)
then the points of Ty Na° are among the nine points A;;, Bi(i,j = 1,2,3,4 i #J;
k =1,2,3) and three configurations only are possible:

—type 1: consists only of int.-points A;;, possibly all of them;

—type 2: consists of one B, and up to four A;;’s (those four which lie on the
two sides of the diagonal triangle meeting at B)):

—type 3: consists of the three B,’s only, and o’ is an elementary plane.

Proor. Applying theorem 1 to each triple of the A;’s, one sees easily that the
six 4;;’s form a configuration of type ““T”” (or of type “‘L’" if one takes less than
the six points), thus type 1 is certainly possible. Suppose next that «° N T, consists
of at least one int.-point, say A4, (denoted then A7,), and at least one outsider,
call it X°. By Lemma 2 X° cannot lie on any m; and Ay, does not lie neither on m,
nor on m,; then by applying Lemma 2 to each of the triples 4,454, and A7 A343,
it follows that X°A4S$, must be incident to Az, the int.-point opposite; to A45,.
Thus, every outsider other than X° should also lie on this line 47,43,, which is a
side of the diagonal triangle. However, there exist a point of I'y N &° not collinear
with A$,X°; such point is then another int.-point; assume it to be 43 (hence
denoted 4,3). The int.-point opposite to Aj; is A,4, and repeating the above
argument, X° and every outsider should lie also on A9; 4,4 (a second side of the
diagonal triangle). Hence there can be only one outsider: the point of intersection
of A$,A5, and A]34,4, i.e., one of the B,’s; the other possible points are evidently
A, and A,, and only these two. This is type 2.

Finally, suppose o° contains only outsiders; at least three non-collinear ones
are required. By Lemma 2 applied to each of the triples 4’474y, these outsiders
cannot lic on any of the m,’s. Then, by an argument similar to the one above,
each pair of outsiders must be collinear with two opposite int.-points, ie. lie
on a side of the diagonal triangle; as we have three pairs not on one line, these
outsiders must coincide with the B,’s and there can be no other points: this is
type 3. Of course o° is elementary in this case.
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All possible combinations of int.-points and outsiders have been investigated,
and the proof of the theorem is complete.

REMARK 2. As noted in Remark 1, the triangle B, B,B; is in perspective with
each of the triangles ATASAS, ALASAL, ASAZAS, and ASAZAS. If As, Ag, A4, Ay
are the respective centres of perspectivity, it is easily shown that the eight points:
A(i=1,2,3,4) and A;(j=5,6,7,8), are the vertices of a projective cube, the
points B,(k = 1,2, 3) being three (out of four) of the diagonal points of the cube.
The four A7’s and the plane «° completely determine the cube.

TueoreM 3. If a plane o° is a neighbour of five points A7 (i =1,2,--+,5) no
four of which being coplanar, then «° is an elementary plane; the three points of
I', Mo’ are int.-points w.r. to the five AY’s. Moreover, the indices can be chosen
so that these points will be A5, AS,, A so that o° is of type 1 w.r. to
ASASASAS, of type 3 w.r. to AJAJASAS and of the type 2 w.r. to each of the
three other possible tetrahedra. Except for a permutation of subscripts, this is
the only possible configuration.

Proor. The five points 4] are vertices of five tetrahedra. By Theorem 2, «°
should be of one of the types 1, 2 or 3 w.r. to each tetrahedron. The proof of the
theorem will be given in a series of steps or lemmas.

LemMMA 3. o can be of type 3 w.r. to at most one of the tetrahedra.

Proor. If a° is of type 3 w.r. to two tetrahedra—say, e.g., 47454345 and
ASASASAS, then the two corresponding complete quadrilaterals in «° have the
same diagonal triangle, and they also have a common edge m, = ms =
a® M A5A3AS as the plane A7A343 is a face of both tetrahedra. However a well-
known and easily proved exercise in elementary planar projective geometry
states there is one and only one complete quadrilateral having a given triangle as
diagonal triangle and a given line (not incident to any vertex of the triangle) as
an edge. On the other hand, the two quadrilaterals cannot coincide (45 # A43),
so we get a contradiction and the lemma is proved.

LemMA 4. All the points of «° Ny are int.-points A;; w.r. to the five A3’s.

Proor. From Lemma 3 above, o° is of type 1 or type 2 w.r. to at least four
of the tetrahedra, and therefore it contains at most one outsider point. Assume
there is an outsider X°; then there must also be an int.-point 4;;€ I, for some
values of i and j (i #j). It follows that w.r. to the tetrahedron which has not
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A? as vertex and w.r. to the tetrahedron which has not 45 as vertex, 4;; would be
a second outsider. This in turn implies o° is of type 3 w.r. to both tetrahedra,
contradicting Lemma 3. Hence no X° exists,

LEMMA 5. «° is of type 3 w.r. to at least one tetrahedron.

Proor. Suppose o° is not of type 3 w.r. to any of the five possible tetrahedra.
By Lemma 4, «®° NI, consists of at least three int.-points (non-collinear). We may
assume A;, is one of them, then the indices 1 and 2 cannot appear in the other
A;;’s €Ty, otherwise w.r. to the tetrahedron not having the corresponding A7 or 43
as vertex, «° would have (at least) two outsiders and be of type 3, contradicting
the assumption. Then a second possible point would be 43, (or 435 or Ays).
Again, by the same argument, a third point 4;;eT’y cannot have 1,2,3,4 as
indices; but only the index 5 remains and i # j; one gets an impossibility; and
the lemma is proved.

Going back now to the proof of Theorem 3, it follows from Lemmas 3 and 5,
that o° must be of type 3 w.r. to exactly one tetrahedron, and «° is then elementary.
We may suppose the points labelled so that the point which is not a vertex of
that particular tetrahedron (w.r. to which «° is of type 3) is A3. By Lemma 4,
the three unique points of &° N T’y are int.-points w.r. to the five 47’s but outsiders
w.r. to the four A3, A4S, A5, A5. This requires that these points be indexed
A3, A3, A%y, with i,j, k being three (distinct) out of the four integers 1,2,3,4.
Again one may assume the labelling so that these are the points 45, 45,, 433,
which shows that «° is of type 1 w.ur. to the tetrahedron A{A5A$AS. It
is easily checked that a° is of type 2 w.r. to the three remaining tetrahedra; it is,
of course, of type 3 w.r. to A7454343.

With the same notation as in Theorem 3 and using Remark 2, with the points
B, being the Ag; (i = 1,2,3) one proves without difficulty the following:

COROLLARY 1. There is one and only one projective cube having the points
A? (i=1,2,3,4,5) as vertices and the points AS; (j=1,2,3) as diagonal points.
Furthermore, given any four of the five A7’s, and all three A3}’s, ithe fifth A?’s
is uniquely determined by these seven points so that the plane «° spanned by the

3,’s be a neighbour of the five A’s and the A5;’s be elements of T'y.

COROLLARY 2. Six or more points of I'y, no four of which are coplanar,
cannot have a common neighbour plane.
This is an obvious result of Theorem 3 and Corollary 1.
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We investigate now the case of four points A7(i =1,2,3,4) which are the
vertices of a complete quadrangle in a plane §° and have a common neighbour
plane o° with m = «® N f°. We remark that if two opposite sides of the quadrangle
say,e.g. ASAS and A3AS meet m (hence o°)inint.-points A;,, A3, and 4;,# 45y,
it will follow from Lemma 2 that no line ¢°eI'; Na° is incident to A, or A,,,
as every triangle having three of the AP’s as vertices has one and only one of
these opposite sides as an edge. Using this remark and again Lemma 2 the fol ow-
ing theorem is easily proved:

THEOREM 4. If o is a neighbour plane of four points A7 (i=1,2,3,4) which
are vertices of a complete quadrangle in a plane B°, then two diagonal points
of the quadrangle are incident to the line m = a° N B° (i.e. must be int.-points
w.r. to the A2’s); also the plane o is ordinary, one of these diagonal points on m
being the leader point, while the follower line is incident to the second diagonal
point on m, this latier point may be itself, a point of I'y.

COROLLARY 3. Five or more distinct coplanar points of T’y cannot have a
common neighbour plane.

This is an immediate result of Theorem 4, as two complete quadrangles having
three common vertices cannot have two common diagonal points.

THEOREM 5. If o° is a neighbour of five points A7 (i =1,2,3,4,5)—where
four of them are vertices of a complete quadrangle in a plane B°, while the
fifth one, say A%, is not incident to B° then o is ordinary with one of the diagonal
points of the quadrangle as leader point, while the follower line is incident to a
second diagonal point of the quadrangle; also this line contains at most three
points of Ty: this second diagonal point itself and two int.-points A;s. Hence
o° N Ty contains at most four points which are int.-points w.r. to the five A3’s.

ProoF. Without loss of generality, one may assume that the points have been
labelled so that A2, (i = 1,2,3,4) are the vertices of the quadrangle, in the plane
B°. By Corollary 3, A3 does not lie in §°. By Theorem 4, «° being a neighbour of
the four vertices of the quadrangle, it is ordinary with two diagonal points lying
on m=a°Nf° and again one may assume the points in §° labelled so that
Ay, = Ay, and A, = A,; are the two diagonal points on m, and so that 4,, eI’y
(hence denoted A3,); then the follower line must be incident to 4,,. It remains
to show that on that line, there may be besides 4, itself at most two more points
of I'y and these are int.-points A4;s.

In what follows, ijhk is any permutation of the integers 1234. Apply now
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Theorem 2 to each of the four tetrahedra 45474345, The vertices of the cor-
responding complete quadrilateral in a° are the points 437,, 414, 4;s, 4js, Ays
and either 4,5 or A4,,, while the point A,s is always a vertex of the diagonal
triangle of the quadrilateral (this is easily verified for every permutation ijh k).
Clearly, as A5, €T, a° is of type 1 or type 2 w.r. to each tetrahedron and must
be of type 2 w.r. to at least one of them, say 4547494;; however the only possible
vertex of the corresponding diagonal triangle which lies on that side of this
triangle which is incident to AS, is exactly A;s.

Therefore, a° N T, consists of A3, Ays, possibly 4,4 and the other 4,5 which
lies on the line A, A,s, i.e. together either the pair (4,5, A,5) or the pair (4,5, A35)
(both elements or only one of the pair). Then one verifies that with these four
points (or only three of them) «° is of type 1 w.r. to each of the tetrahedra having
both A; and A; as vertices and of type 2 w.r. to those tetrahedra having only
one of them as vertex; and there are no other possibilities.

COROLLARY 4. Withthe same conditions and notation as in Theorem 5 above,
there exists a projective cube (not unique) having all five 47 (i =1,2,3,4,5) as
vertices and three (non-collinear) out of the four possible points of «° NIy as
diagonal points.

PrROOF. o° must contain (at least) three non-collinear points of I'y, hence one
of them must be either A,, or A4,,, the other either 4;5 or 4,5 (with the notation
of Theorem 5). Suppose the labelling is so that A3, and A3 are certainly elements
of Ty, then either 4, or A5 (or both) are also elements of I'y. Then in the plane of
ASASAS, the point Ag = A7,A45 N A7sA45 is the only possible fourth point, if a
projective cube exists with the conditions as stated. In the plane of 4354743,
two possible cases arise: if 4., is taken as third diagonal point of the required
cube, the only possible point in this plane is Ag = A;4,4% NAJsA45. Then, in the
plane A343A4g containing A5, and Ajs, one obtains A, = 43,45 N A7545.
It follows that A3, A4, A5, Ag are coplanar vertices of a complete quadrangle which
has 43, and A, as diagonal points. It is easily seen that 47 (i=1,2,3,4,5) and
A; (j=6,7,8) are the eight vertices of a projective cube, with diagonal points
A3y, ASs, Aya If Ay is taken as third diagonal point, in the plane ASASAZ,
one gets the point Ag = A,547 N A sAS. Then, in the plane 434545 containing
A%, and A5, one obtains, as above: A7 = 45,45 N A7sAS. Again, it is easy to
show that the eight points A7 (i = 1,2,-+,5) A¢, A7 and Ag are vertices of a cube
with diagonal points A7,, Ajs, Ay4s.
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In the above discussion, A3, and A7 5 have been taken, in all cases, as diagonal
points of the cube; other cubes can be obtained having 47(1 < i £ 5) as vertices
and other points A4;; as diagonal points.

THEOREM 6. If a plane o° is a neighbour of six points of Ty, then it is an
ordinary plane and contains at most four points of I',. Furthermore, the six
points are vertices of a projective cube having three of the points of «° N Ty as

diagonal points.

Proor. By Corollaries 2 and 3, four of the six points having «° as neighbour
must lie in one plane f$°, call them A (i = 1,2,3,4); the two others cannot be
incident to f°. Call one of them A% and apply Theorem 5 to the five 4’s; this
proves immediately the first part of the present theorem. As in the proof of
Theorem 5, one may assume the points labelled so that the two diagonal points of
the quadrangle 47 (i=1,2,3,4) are 49, and A,,, with 45, and 4J5 elements of
Iy, and possibly 4,5 and 4, (one of them at least) also. Let A; be the sixth point
for which a° is a neighbour and apply again Theorem 5 to the set of five points
A3, 43, A5, A3, A, Any point of «° N T’y must be an int.-point of this set, hence
one must have Ajs = A4;, for some value of j taken among the integers 2, 3,4
(j =1 would imply that A3, 45, A; are collinear, contradicting Lemma 1). Thus
the points A7, 45,45, A; are coplanar and one can apply Theorem 4 to this set.
Together with the results applying to the set 47 (i = 1,2, .-+, 5) stated above, three
cases are possible:

(i) j =2; the plane A7A245 contains already the points A5, and 4S5, as ele-
ments of I'y, then 47 must coincide with the point 44 of Corollary 4. Both A,
and A4, are possible elements of I',.

(ii) j = 3; the plane 474345 contains ASseTy; thus this point is one of the
diagonal points of AA5A3A;, i.e. A lies on A3A4355. The other diagonal point
(in o®) must be either 4,5 or 4;5. Ifitis 4,3, then 4] = 4,345 N A7sA3. It can
be verified that this is point 4, of Corollary 4, and in this case, as 4,;¢ ', the
only possible third point of I'y Ma®is A4, (4,447, is incident to A5, as required
by Theorem 4); «° is elementary. If the required diagonal point in o° is A;s,
then: A7 = 43547 N AS5AS and Aj = A7 of Corollary 4; «° is again elementary
with 445 as third point of a° N T,

(iii) j = 4; A7 must lie in the plane 4443 which contains A{s, 4,4 and Ays.
Then, according to which of 4,, or A, is taken as second diagonal point of the
corresponding quadrangle, and by arguments similar to those in (ii), one obtains
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respectively A3 = Ag or Ag (of Corollary 4). In the first case, ° NIy consists of
AS,, A35, A, and also possibly 4,5; in the second case, a° N Ty = {A3,, 435, A4s}s
o° is elementary.

The second part of the theorem follows from the above results and Corollary 4.

THEOREM 7. If a plane o° is a neighbour of seven distinct points of Ty, then
these points are vertices of a projective cube, «° is elementary, and the three
points of o° NIy are diagonal points of the cube.

PrOOF. As in the proof of Theorem 6, four of the points must lie in a plane §°
call them A7, i =1,2,3,4; the three others are not in f°, call one of them A3,
and w.r. to those five points 47 (1 £ i < 5), with the same notation as in Theorems
5 and 6, suppose AS,, A%5e, Na°. Then, by similar arguments as above, and
by Theorem 6, it follows that for the two other points having a° as neighbour, the
only possible cases are:

(i) The two points are the points A¢ and A4,, or A and Ag, or A, and Ag
(with the notation of Corollary 4); in each of these cases, o° is elementary, with
Ay, as third point of 'y in o°.

(ii) The two points are the points A¢ and A%, or Ag and Ag, or 47 and Ag,
again «° is elementary with A,5€T,.

Then the theorem follows from these facts and Corollary 4.

The Fundamental Theorem, stated in the Introduction, now follows in a
natural way: With the same notation as in Corollary 4 and Theorems 5, 6,7, if a°
is a neighbour of eight points, then clearly, these are:

— either 4° (i=1,2,--,5), AgAsAdg and an NTo= {435,435, 4%4}; or
AP (i=1,2,--,5), Ag, A5, Ap with ag NTy = {45, A5, 435}, and obviously, no
more than eight points can have a common neighbour plane.

4. Conclusion

The Fundamental Theorem proved here for P? is an extension of corresponding
results of Kelly and Moser for the plane case, as stated in the Introduction (see
[3]) and this suggests the following conjecture:

Given, in a d-dimensional ordered projective space P% a set I'y of n points
(n finite) not lying in one hyperplane, with the corresponding definitions of the
residence of a point, a neighbour hyperplane, and a projective d-dimensional
cube with 27 vertices and d + 1 diagonal points, one may conjecture that a
hyperplane can be a neighbour of at most 2% points of I'y, these points being the
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vertices of a projective cube, the hyperplane being then elementary, with exactly
d points of I'y incident to it, these d points being diagonal points of the cube.
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